Adaptive Monte Carlo applied to uncertainty estimation in a five axis machine tool link errors identification
نویسندگان
چکیده
Knowledge of a machine tool axis to axis geometric location errors allows compensation and corrective actions to be taken to enhance its volumetric accuracy. Several procedures exist, involving either lengthy individual test for each geometric error or faster single tests to identify all errors at once. This study focuses on the closed kinematic chain method which uses a single setup test to identify the eight link errors of a five axis machine tool. The identification is based on volumetric error measurements for different poses with a non-contact Cartesian measuring instrument called CapBall, developed in house. In order to evaluate the uncertainty on each identified error, a multi-output Monte Carlo approach is implemented. Uncertainty sources in the measurement and identification chain – such as sensors output, machine drift and frame transformation uncertainties – can be included in the model and propagated to the identified errors. The estimated uncertainties are finally compared to experimental results to assess the method. It also reveals that the effect of the drift, a disturbance, must be simulated as a function of time in the Monte Carlo approach. Results shows that the machine drift is an important uncertainty source for the machine tested.
منابع مشابه
Elsevier Editorial System(tm) for International Journal of Machine Tools and Manufacture Manuscript Draft Title: Adaptive Monte Carlo Applied to Uncertainty Estimation in Five Axis Machine Tool Link Errors Identification with Thermal Disturbance
Knowledge of a machine tool axis to axis geometric location errors allows compensation and corrective actions to be taken to enhance its volumetric accuracy. Several procedures exist, involving either lengthy individual test for each geometric error or faster single tests to identify all errors at once. This study focuses on the closed kinematic chain method which uses a single setup test to id...
متن کاملSensitivity and uncertainty analysis of sediment rating equation coefficients using the Monte-Carlo simulation (Case study: Zoshk-Abardeh watershed, Shandiz)
The sediment load estimation is essential for watershed management and soil conservation strategies. The sediment rating curve is the most common approach for estimating the sediment load when the observed sediment records are not available. With regard to the measurement errors and the limitation of available data, the sediment rating curve has a degree of uncertainty which should be accounted...
متن کاملDosimetric characterization of a high dose rate 192I source for brachytherapy application using Monte Carlo simulation and benchmarking with thermoluminescent dosimetry
Background: The purpose of this project was to derive the brachytherapy dosimetric functions described by American Association of Physicists in Medicine (AAPM) TG-43 U1 based on high dose rate 192I sources. Materials and Methods: The method utilized included both simulation of the designed Polymethyl methacrylate (PMMA) phantom using the Monte Carlo of MCNP4C and benchmarking of the simulation ...
متن کاملMonte Carlo calculation of proton ranges in water phantom for therapeutic energies
Introduction: One crucial point when calculating the distribution of doses with ions is the uncertainty of the Bragg peak. The proton ranges in determined geometries like homogeneous phantoms and detector geometries can be calculated with a number of various parameterization models. Several different parameterizations of the range-energy relationship exist, with different level...
متن کاملBayesian wavelet estimation from seismic and well data
A Bayesian method for wavelet estimation from seismic and well data is developed. The method works both on stacked data and on prestack data in form of angle gathers. The seismic forward model is based on the convolutional model, where the reflectivity is calculated from the well logs. Possible misties between the seismic traveltimes and the time axis of the well logs, errors in the log measure...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1106.3326 شماره
صفحات -
تاریخ انتشار 2011